
Entanglement in spin-1 Heisenberg chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 8703

(http://iopscience.iop.org/0305-4470/38/40/014)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 03:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/40
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 8703–8713 doi:10.1088/0305-4470/38/40/014

Entanglement in spin-1 Heisenberg chains

Xiaoguang Wang1, Hai-Bin Li2, Zhe Sun1 and You-Quan Li1

1 Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University,
HangZhou 310027, People’s Republic of China
2 Department of Applied Physics, Zhejiang University of technology, HangZhou 310014,
People’s Republic of China

Received 24 March 2005, in final form 3 August 2005
Published 21 September 2005
Online at stacks.iop.org/JPhysA/38/8703

Abstract
By using the concept of negativity, we study entanglement in spin-1 Heisenberg
chains. Both the bilinear chain and the bilinear–biquadratic chain are
considered. Due to the SU (2) symmetry, the negativity can be determined by
two correlators, which greatly facilitate the study of entanglement properties.
Analytical results of negativity are obtained in the bilinear model up to four
spins and in the 2-spin bilinear–biquadratic model, and numerical results of
negativity are presented. We determine the threshold temperature before which
the thermal state is doomed to be entangled.

PACS numbers: 03.65.Ud, 03.67.−a, 75.10.Jm

1. Introduction

Since Haldane’s prediction that the one-dimensional Heisenberg chain has a spin gap for
integer spins [1], the physics of quantum spin chains has been the subject of many theoretical
and experimental studies. In these studies, the bilinear spin-1 Heisenberg model and the
bilinear–biquadratic Heisenberg model have played important roles [2–4]. The corresponding
Hamiltonians are given by

H1 =
N∑

i=1

JSi · Si+1, (1)

H2 =
N∑

i=1

[JSi · Si+1 + γ (Si · Si+1)
2], (2)

respectively, where the periodic boundary condition is assumed, namely, SN+1 ≡ S1.
Obviously, these two Hamiltonians exhibit a SU (2) symmetry. Moreover, the bilinear–
biquadratic model exhibits a very rich phase diagram [5].
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Recently, the study of entanglement properties in Heisenberg systems have received
much attention [6–39]. Quantum entanglement lies at the heart of quantum mechanics, and
can be exploited to accomplish some physical tasks such as quantum teleportation [40]. Spin-
1/2 systems have been considered in most of these studies. However, due to the lack of
entanglement measure for higher spin systems, the entanglement in higher spin systems has
been less studied. There are several preceding works on entanglement in spin-1 chains. Fan
et al [33] and Verstraete et al [34] studied entanglement in the bilinear–biquadratic model with
a special value of γ = 1/3, i.e., the AKLT model [2]. Zhou et al studied entanglement in the
Hamiltonian H2 for the case of two spins [35].

In this paper, by using the concept of negativity [41], we study pairwise entanglement in
both the bilinear and the bilinear–biquadratic Heisenberg spin-1 models. The negative partial
transpose gives a sufficient condition for entanglement of spin-1 particles. The negativity of
a 2-spin state ρ is defined as [41]

N (ρ) =
∑

i

|µi |, (3)

where µi is the negative eigenvalue of ρT2 , and T2 denotes the partial transpose with respect
to the second system. If N > 0, the 2-spin state is entangled.

We study entanglement in both the ground state and the thermal state. The state of a
system at thermal equilibrium is described by the density operator ρ(T ) = exp(−βH)/Z,
where β = 1/kBT , kB is Boltzmann’s constant, which is assumed to be 1 throughout the
paper, and Z = Tr{exp(−βH)} is the partition function. The entanglement in the thermal
state is called thermal entanglement.

We organize the paper as follows. In section 2, we give the exact forms of the negativity
for an SU (2)-invariant state, and show how the negativity is related to the two correlators. We
also discuss how to obtain negativity from the ground-state energy and partition function in the
bilinear–biquadratic model. We study entanglement in the bilinear and bilinear–biquadratic
models in sections 3 and 4, respectively. Some analytical and numerical results of negativity
are obtained. We conclude in section 5.

2. Negativity and correlators

Schliemann considered the entanglement of two spin-1 particles via the Peres–Horodecki
criteria [31], and find that the SU (2)-invariant state is entangled if either of the following
inequalities holds:

〈(Si · Sj )
2〉 > 2, 〈(Si · Sj )

2〉 + 〈Si · Sj 〉 < 1. (4)

Now we explicitly give the expression of negativity for the SU (2)-invariant 2-spin state.
According to the SU (2)-invariant symmetry, any state of two spin-1 particles has the

general form [31]

ρ = G|S = 0, Sz = 0〉〈S = 0, Sz = 0| +
H

3

1∑
Sz=−1

|S = 1, Sz〉〈S = 1, Sz|

+
1 − G − H

5

2∑
Sz=−2

|S = 2, Sz〉〈S = 2, Sz|, (5)

where |S, Sz〉 denotes a state of total spin S and z the component of Sz, and

G = 1
3 [〈(Si · Sj )

2〉 − 1], H = 1 − 1
2 [〈Si · Sj 〉 + 〈(Si · Sj )

2〉]. (6)



Entanglement in spin-1 Heisenberg chains 8705

In order to perform partial transpose, the product basis spanned by {|S1 = 1, S1z〉⊗ |S2 =
1, S2z〉} is a natural choice. By using the Clebsch–Gordan coefficients, we may write state ρ

in the product basis. The partially transposed state with respect to the second spin ρT2 can be
written in a block-diagonal form with two 1×1 blocks, two 2×2 blocks, and one 3×3 block.
After diagonalization of each block, one finds that only two eigenvalues of ρT2 are possibly
negative (the other eigenvalues are always positive or zero) [31]:

µ1 = 1
6 (2 − 〈(Si · Sj )

2〉), µ2 = 1
3 (〈Si · Sj 〉 + 〈(Si · Sj )

2〉 − 1). (7)

Moreover, µ1 and µ2 occur with multiplicities 3 and 1, respectively. Therefore, the negativity
is obtained as

N (ij) = 1
2 max[0, 〈(Si · Sj )

2〉 − 2] + 1
3 max[0, 1 − 〈(Si · Sj )〉 − 〈(Si · Sj )

2〉]. (8)

We see that for the SU (2)-invariant state, the negativity is completely determined by two
correlators 〈(Si · Sj )〉 and 〈(Si · Sj )

2〉.
Recall that the swap operator between two spin-1 particles is given by

Sij = Si · Sj + (Si · Sj )
2 − I (9)

where I denotes the 9×9 identity matrix. Then, the negativity can be rewritten in the following
form:

N (ij) = 1
2 max[0, 〈Sij 〉 − 〈Si · Sj 〉 − 1] + 1

3 max[0,−〈Sij 〉]. (10)

We see that if the expectation value 〈Sij 〉 < 0, the state is entangled. The swap operator
satisfies S2

ij = 1, and thus it has only two eigenvalues ±1. If a state is an eigenstate of the
swap operator, expression (10) can be simplified. When the corresponding eigenvalue is 1,
equation (10) simplifies to

N (ij) = 1
2 max[0,−〈Si · Sj 〉], (11)

and when the eigenvalue is −1, the equation simplifies to

N (ij) = 1
3 + 1

2 max[0,−〈Si · Sj 〉 − 2]. (12)

In the former case, the state is entangled if 〈Si · Sj 〉 < 0, and in the latter case, the state is an
entangled state, and the negativity is larger than or equal to 1/3.

Now we consider the bilinear–biquadratic spin-1 Heisenberg model described by the
Hamiltonian H2. By applying the Hellmann–Feynman theorem to the ground state of H2 and
considering the translational invariance, we may obtain the correlators as

〈(Si · Si+1)〉 = 1

N

∂EGS

∂J
, 〈(Si · Si+1)

2〉 = 1

N

∂EGS

∂γ
, (13)

where EGS is the ground-state energy. Substituting the above equation into equation (8) yields

N (ii+1) = 1

2
max

[
0,

1

N

∂EGS

∂γ
− 2

]
+

1

3
max

[
0, 1 − 1

N

∂EGS

∂J
− 1

N

∂EGS

∂γ

]
. (14)

For the case of finite temperature, we have

N (ii+1) = 1

2
max

[
0,

−1

NβZ

∂Z

∂γ
− 2

]
+

1

3
max

[
0, 1 +

1

NβZ

∂Z

∂J
+

1

NβZ

∂Z

∂γ

]
. (15)

We see that the knowledge of ground-state energy (the partition function) is sufficient to
determine the negativity for the case of zero (finite) temperature.



8706 X Wang et al

3. The bilinear Heisenberg model

Let us now consider entanglement in the bilinear Heisenberg model. Due to the nearest-
neighbour character of the interaction, the entanglement between two nearest-neighbour spins
is prominent compared with two non-nearest-neighbour spins [15]. Thus, we focus on the
nearest-neighbour case in the following discussions of entanglement.

3.1. Two spins

For systems with few spins, we aim at obtaining analytical results of negativity. The
Hamiltonian for two spins can be written as

H1 = S1 · S2 = 1
2

[
(S1 + S2)

2 − S2
1 − S2

2

]
, (16)

from which all the eigenvalues of the system are given by

E0 = −2(1), E1 = −1(3), E2 = 1(5), (17)

where the number in the brackets denotes the degeneracy.
We investigate the entanglement of all eigenstates of the system. When the energy level of

our system is non-degenerate, the corresponding eigenstate is pure. When a kth energy level is
degenerate, we assume that the corresponding state is an equal mixture of all eigenstates with
energy Ek . Thus, the state corresponding to the kth level with degeneracy becomes a mixed
rather than pure state, keeping all symmetries of the Hamiltonian. This assumption is based
on the following fact. An equal mixture of degenerate ground states can be obtained from the
thermal state exp[−H/(kBT )]/Z by taking the zero-temperature limit, and the state is called
thermal ground state [15]. The kth eigenstate ρk can be considered as the thermal ground
state of the nonlinear Hamiltonian H ′ given by H ′ = (H − Ek)

2. Note that Hamiltonian H ′

inherits all symmetries of Hamiltonian H.
From equations (8) and (16), we obtain another form of the negativity as

N (12) = 1
2 max

[
0,

〈
H 2

1

〉 − 2
]

+ 1
3 max

[
0, 1 − 〈

H1 + H 2
1

〉]
. (18)

To determine the negativity, it is sufficient to know the cumulants 〈H1〉 and
〈
H 2

1

〉
.

From equations (17) and (18), the negativities corresponding to the kth level are obtained
as

N (12)
0 = 1, N (12)

1 = 1/3, N (12)
2 = 0. (19)

We see that the ground state is a maximally entangled state, the first-excited state is also
entangled, but the negativity of the second-excited state is zero.

Having known negativities of all eigenstates, we next consider the case of finite
temperature. The cumulants can be obtained from the partition function. From equation (17),
the partition function reads

Z = e2β + 3 eβ + 5 e−β . (20)

A cumulant of an arbitrary order can be calculated from the partition function as〈
Hn

1

〉 = (−1)n

Z

∂n

∂βn
Z

= (−1)n

Z
[2n e2β + 3 eβ + 5(−1)n e−β ]. (21)

Substituting the cumulants with n = 1, 2 into equation (18) yields

N = 1

2Z
max(0, 2 e2β − 3 eβ − 5 e−β) +

1

3Z
max(0, 3 eβ − e2β − 5 e−β). (22)

Thus, we obtain the analytical expression of the negativity.
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The second term in equation (22) can be shown to be zero. To see this fact, it is sufficient
to show that F(x) = x3 − 3x2 + 5 > 0, where x = eβ > 1. It is straightforward to check that
the function F takes its minimum 1 at x = 2. As the minimum is larger than zero, the function
is positive definite. Thus, equation (22) simplifies to

N = 1

2Z
max(0, 2 e2β − 3 eβ − 5 e−β). (23)

The behaviour of the negativity versus temperature is similar to that of the concurrence [43]
in the spin-1/2 Heisenberg model [7], namely, the negativity decreases as the temperature
increases, and there exists a threshold value of temperature Tth, after which the negativity
vanishes. This behaviour is easy to understand as the increase of temperature leads to the
increase of probability of the excited states in the thermal state, and the excited states are less
entangled in comparison with the ground state. From equation (23), the threshold temperature
can be analytically obtained as

Tth = 1

ln
(

1
2 + 1

2(11+2
√

30)1/3 + (11+2
√

30)1/3

2

)
≈ 1.3667. (24)

3.2. Three spins

The Hamiltonian for three spins can be rewritten as

H1 = 1
2

[
(S1 + S2 + S3)

2 − S2
1 − S2

2 − S2
3

]
, (25)

from which the ground-state energy and the correlator 〈S1 · S2〉 are immediately obtained as

EGS = −3, 〈S1 · S2〉 = −1. (26)

In order to know the ground-state negativity, we need to calculate another correlator
〈(S1 · S2)

2〉.
By considering the translational invariance and using similar techniques given by [44–46],

the ground-state vector is obtained as

|�〉GS = 1√
6
(|012〉 + |201〉 + |120〉 − |021〉 − |102〉 − |210〉), (27)

where |n〉 denote the state |s = 1,m = s − n〉, the common eigenstate of S2 and Sz. Then, we
can check that

S1 · S2|�〉GS = −|�〉GS. (28)

Thus, the correlator 〈(S1 · S2)
2〉 is found to be

〈(S1 · S2)
2〉 = 1. (29)

Substituting equations (26) and (29) into equation (8) yields

N = 1/3. (30)

We see that spins 1 and 2 are in an entangled state at zero temperature. With the increase
of temperature, the negativity monotonically decreases until it reaches the threshold value
Tth = 0.9085, after which the negativity vanishes.
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3.3. Four spins

Now we consider the 4-spin case, and the corresponding Hamiltonian can be written as

H1 = 1
2 [(S1 + S2 + S3 + S4)

2 − (S1 + S3)
2 − (S2 + S4)

2]. (31)

The standard angular momentum coupling theory directly yields the ground-state energy and
the correlator 〈S1 · S2〉,

EGS = −6, 〈S1 · S2〉 = −3/2. (32)

Then, we need to compute another correlator 〈(S1 · S2)
2〉 or alternatively the expectation value

〈S12〉. So, it is necessary to know the exact form of the ground state.
By using similar techniques given by [44–46], the ground-state vector is obtained as

|�〉GS = 1/2|ψ1〉 − 3/2|ψ2〉 + |ψ3〉 − 3/2|ψ4〉 + 3/
√

2|ψ5〉 + |ψ6〉. (33)

where

|ψ1〉 = 1/2(|0022〉 + |2002〉 + |2200〉 + |0220〉),
|ψ2〉 = 1/2(|0112〉 + |2011〉 + |1201〉 + |1120〉),
|ψ3〉 = 1/2(|0121〉 + |1012〉 + |2101〉 + |1210〉), (34)

|ψ4〉 = 1/2(|0211〉 + |1021〉 + |1102〉 + |2110〉),
|ψ5〉 = 1/

√
2(|0202〉 + |2020〉),

|ψ6〉 = |1111〉.
Then, from the explicit form of the ground state, after two-page calculations, we obtain the
expectation value of the swap operator as

〈S12〉 = 1/6. (35)

Substituting equations (32) and (35) into equation (10) leads to

N = 1/3. (36)

It is interesting to see that the ground-state negativity in the 4-qubit model is the same as that
in the 3-qubit model. The threshold value is found to be Tth = 1.3804.

For N � 5, it is hard to obtain analytical results of negativity. The behaviours of
negativity are similar to those for N � 4, namely, with the increase of temperature, the
negativity decreases until it vanishes at threshold temperature Tth; for instance, the threshold
temperatures Tth ≈ 0.95 and Tth ≈ 1.21 for five and six spins, respectively. The negativity for
two nearest-neighbours spins is estimated as N = 0.1240 (N = 0.2509) for the case of five
spins (six spins).

Here, we make a comparison of entanglement properties between spin-1/2 and spin-1
systems. For 2- and 4-spin systems, the behaviour of the negativity for the case of spin-1
is similar to that of the concurrence for the case of spin-1/2, namely, with the increase of
temperature, both the negativity and the concurrence decrease until they reach zero at certain
threshold temperatures. However, for 3-spin systems, there exists a striking difference. The
ground state is entangled (not entangled) for the spin-1 (spin-1/2) case [9]. The difference
arises from the degeneracy of ground states, which suppresses the entanglement to zero in the
spin-1/2 system. It is known that the ground state is non-degenerate for spin-1 Heisenberg
chains with any number of spins, and is degenerate for odd-number spin-1/2 chains. Normally,
the degeneracy will suppress entanglement. A common feature is that the ground states of
2-spin systems are maximally entangled states, and another common feature is that with the
increase of an even number of spins from 2 to 6, the entanglement decreases [13]. We may
expect that in a infinite system, the negativity N12 is still not zero, similar to the entanglement
in spin-1/2 systems [13]. However, how to calculate the negativity in the limit of infinite
particles is still challenging.
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Figure 1. Negativity versus γ for different temperatures in the 2-spin model (J = 1).

4. Bilinear–biquadratic spin-1 Heisenberg chains

We now study entanglement properties in the bilinear–biquadratic spin-1 Heisenberg model,
and first consider the case of two spins. From equation (14) with N = 1, if we know the
ground-state energy, the negativity is readily obtained. The ground-state energy is given by

EGS =
{−2J + 4γ when γ < 1/3,

−1J + γ when γ > 1/3.
(37)

We see that there exits a level crossing at the point of γ = 1/3. Then, substituting the above
equation into equation (14) yields

N =
{

1 when γ < 1/3,

1/3 when γ > 1/3.
(38)

Before the point γ = 1/3, the negativity of the ground-state is 1, while the negativity of the
first-excited state is 1/3. After the cross point, the ground and first-excited states interchange,
and thus, the negativity of the ground state after the cross point is 1/3. It is interesting to see
that the model at the cross point is just the AKLT model.

In figure 1 we plot the negativity versus γ for different temperatures. The level cross
greatly affects the behaviours of the negativity at finite temperatures. For a small temperature
(T = 0.05), the negativity displays a jump to a lower value near the cross point. For higher
temperatures, the negativity first decreases, and then increases at γ from − 1 to 1. For T = 1.5,
we observe that there exists a range of γ in which the negativity is zero.

For the 3-spin case, we plot the negativity versus γ for different temperatures in figure 2.
For a low temperature T = 0.015, we observe a dip, which results from the level crossing
near the point of γ = −0.2121. When T = 0.1, the dip becomes more evident. For the cases
of higher temperatures (T = 0.5 and T = 1.0), there exists a range of parameter γ values,
in which the negativity is zero. For the 4-spin case (see figure 3), we also give a plot of the
negativity for different temperatures. For T = 0.03, as γ increases, the negativity decreases
until it reaches its minimum, and then increases. For T = 0.5 and 1.0, the behaviours of
negativity are similar to the case of T = 0.01, and the difference is that the minima shift left.

Comparing cases with different N, we observe some common features in the behaviours
of negativity. (1) The maximum value of negativity occurs at γ = −1; (2) for higher
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Figure 2. Negativity versus γ for different temperatures in the 3-spin model (J = 1).
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Figure 3. Negativity versus γ for different temperatures in the 4-spin model (J = 1).

temperatures, there exists a range of γ , in which the negativity is zero; and (3) for lower
temperatures, the minimum value occurs at a certain value of γ . The first feature is due to the
fact that the biquadratic term with γ = −1 leads the system to be in the maximally entangled
state (the anti-ferromagnetic case). The second and third features result from the competition
between the bilinear and biquadratic terms in the Hamiltonian.

We numerically calculated the threshold temperature and the results are shown in figure 4.
The threshold temperature decreases nearly linearly when γ increases from −1 to a certain
value of γ . After reaching a minimum, it begins to increase. We see that the behaviours of the
threshold temperature are similar for the different numbers of spins. The maximum value of
the threshold temperature occurs at γ = −1. This is also due to the fact that the biquadratic
term with γ = −1 leads the system to be in the maximally entangled state. The higher the
negativity at zero temperature, the higher the threshold temperature.
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As a final remark, we consider the following Hamiltonian,

H3 =
N∑

i �=j

JSi · Sj = 1

2

(
N∑

i=1

Si

)2

− N, (39)

where the interaction is between all spins, and there are altogether N(N − 1)/2 terms. The
system not only shows an SU (2) symmetry, but also an exchange symmetry, namely,
the Hamiltonian in invariant under exchange operation SijH3Sij = H3. For N = 2, 3,
the model is identical to Hamiltonian H1. We know that the ground state is non-degenerate
when N = 2, 3, and thus it must be an eigenstate of Sij and equations (11) and (12) can
apply. From the angular momentum coupling theory, the ground-state energy of H3 is
readily obtained as EGS = −N , and thus we have 〈Si · Sj 〉 = −2/(N − 1). Then, from
equations (11) and (12), the negativity can be either 1/(N −1) or 1/3. For N = 2(N = 3), the
ground state is symmetric (antisymmetric) and then the negativity is 1 (1/3), consistent with
the previous results. However, for N � 4, the ground state is degenerate and we cannot
apply equations (11) and (12). The numerical results show that the negativity is zero
for N � 4.

5. Conclusions

In conclusion, by using the concept of negativity, we have studied entanglement in spin-1
Heisenberg chains. Both the bilinear model and bilinear–biquadratic model are considered.
We have given explicitly the relation between the negativity and two correlators. The merit
of this relation is that the two correlators completely determine the negativity and it facilitates
our discussions of entanglement properties.

We have obtained analytical results of negativity in the bilinear model up to four spins
and in the 2-spin bilinear–biquadratic model. We numerically calculated entanglement in the
bilinear–biquadratic model for N = 2, 3, 4, and the threshold temperatures versus γ are also
given. We have restricted us to the small-size systems, and aimed at obtaining analytical results
via symmetry considerations and getting some numerical results via the exact diagonalization
method. However, for larger systems, the exact diagonalization method is not a viable route.
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It is interesting to investigate large systems by some mature numerical methods such as
the quantum Monte Carlo method and density-matrix renormalization group method. It is
also interesting to consider other SU (2)-invariant spin-1 systems such as the dimerized and
frustrated systems.
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